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Abstract

Advanced satellite technology has been providing unique observations of
global carbon dioxide (CO2) concentrations. These observations have re-
vealed important CO2 variability at different timescales and over regional
and planetary scales. Satellite CO2 retrievals have revealed that stratospheric
sudden warming and the Madden-Julian Oscillation can modulate atmo-
spheric CO2 concentrations in the mid-troposphere. Atmospheric CO2

also demonstrates variability at interannual timescales. In the tropical re-
gion, the El Niño–Southern Oscillation and the Tropospheric Biennial Os-
cillation can change atmospheric CO2 concentrations. At high latitudes,
mid-tropospheric CO2 concentrations can be influenced by the North-
ern Hemispheric annular mode. In addition to modulations by the large-
scale circulations, sporadic events such as wildfires, volcanic eruptions, and
droughts, which change CO2 surface emissions, can cause atmospheric CO2

concentrations to increase significantly. The natural variability of CO2 sum-
marized in this review can help us better understand its sources and sinks and
its redistribution by atmospheric motion.

� Global satellite CO2 data offer a unique opportunity to explore CO2

variability in different regions.
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� Atmospheric CO2 concentration demonstrates variations at intraseasonal, seasonal, and in-
terannual timescales.

� Both large-scale circulations and variations of surface emissions can modulate CO2 concen-
trations in the atmosphere.

1. INTRODUCTION

Atmospheric carbon dioxide (CO2) is an important greenhouse gas and has a big impact on the
radiative budget (e.g.,Goody & Yung 1989, IPCC 2013). As shown in Figure 1, the major absorp-
tion bands of CO2 are at 540–800 cm−1, 850–1,250 cm−1, and 2,100–2,400 cm−1 (Goody & Yung
1989), where they trap infrared radiation emitted from the Earth and warm the atmosphere and
surface.The concentration of atmospheric CO2 is increasing with a positive trend of∼2 ppm/year
(e.g., Keeling et al. 1995, Sarmiento & Wofsy 1999, Tans & Keeling 2014), which has a signifi-
cant influence on global warming (e.g., Dickinson & Cicerone 1986, IPCC 2013). To understand
its variations, researchers have used different data sets to monitor atmospheric CO2 concentra-
tion. Surface, aircraft, and satellite CO2 data are summarized in Table 1. The National Oceanic
and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) network has
∼155 CO2 measurement stations monitoring atmospheric CO2 at the surface (Tans et al. 1998,
GLOBALVIEW-CO2 2010).TheTotal CarbonColumnObservingNetwork (TCCON) has∼20
surface stations that use a ground-based Fourier transform spectrometer to measure column CO2

(Washenfelder et al. 2006, Wunch et al. 2011). In addition to the surface measurements, there
are also aircraft CO2 data, such as those from NOAA ESRL (GLOBALVIEW-CO2 2010), Com-
prehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) (Matsueda et al.
2002), Intercontinental Chemical Transport Experiment-North America (INTEX-NA) (Singh
et al. 2002, Choi et al. 2008), HIAPER Pole-to-Pole (HIPPO) (Wofsy 2011), In-service Aircraft
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Figure 1

CO2 absorption coefficients derived from the high-resolution transmission molecular absorption database. The lines shown indicate
channels used to retrieve CO2 from the OCO-2 and GOSAT (green), TES (red), AIRS (blue), IASI (purple), and ACE (dark yellow).
Abbreviations: ACE, Atmospheric Chemistry Experiment; AIRS, Atmospheric Infrared Sounder; CO2, carbon dioxide; GOSAT,
Greenhouse gases Observing SATellite; IASI, Infrared Atmospheric Sounding Interferometer; OCO-2, Orbiting Carbon Observatory
2; TES, Tropospheric Emission Spectrometer.
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Table 1 Summary of surface, aircraft, and satellite CO2 data sets

Type Data CO2 channels (cm−1)
Surface CO2 NOAA ESRL surface CO2 NA

TCCON column CO2 NA
Aircraft CO2 NOAA ESRL aircraft CO2 NA

CONTRAIL aircraft CO2 NA
INTEX-NA aircraft CO2 NA
HIPPO aircraft CO2 NA
IAGOS aircraft CO2 NA
CARVE aircraft CO2 NA

Satellite CO2 OCO-2 column CO2 (XCO2) 6,250–6,410, 4,760–4,930
GOSAT column CO2 (XCO2) 6,250–6,410, 4,760–4,930
TES mid-tropospheric CO2 660–770, 970–990, 1,070–1,110
AIRS mid-tropospheric CO2 690–725
IASI mid-tropospheric CO2 694–705
ACE mid-tropospheric CO2 2,615–2,635

CO2 channels used to retrieve satellite CO2 are also listed. Abbreviations: ACE, Atmospheric Chemistry Experiment;
AIRS, Atmospheric Infrared Sounder; CARVE, Carbon in Arctic Reservoirs Vulnerability Experiment; CO2, carbon
dioxide; CONTRAIL, Comprehensive Observation Network for Trace gases by AIrLiner; HIPPO, HIAPER Pole-to-Pole;
GOSAT, Greenhouse gases Observing SATellite; IAGOS, In-service Aircraft for a Global Observing System; IASI, Infrared
Atmospheric Sounding Interferometer; INTEX-NA, Intercontinental Chemical Transport Experiment-North America;
NA, not applicable; NOAA ESRL, National Oceanic and Atmospheric Administration Earth System Research Laboratory;
OCO-2, Orbiting Carbon Observatory 2; TCCON, Total Carbon Column Observing Network; TES, Tropospheric
Emission Spectrometer.

for a Global Observing System (IAGOS) (Petzold et al. 2015), and Carbon in Arctic Reservoirs
Vulnerability Experiment (CARVE) (Dupont et al. 2012, Fisher et al. 2014).

Previous in situ CO2 measurements at the surface or from aircraft are limited in spatial extent,
so it is difficult to explore CO2 variability over the global domain. In recent years, satellite missions
have provided global measurements of atmospheric CO2 concentration (e.g., Barkley et al. 2006;
Chahine et al. 2008; Strow & Hannon 2008; Crevoisier et al. 2009; Yokota et al. 2009; Kulawik
et al. 2010; Rinsland et al. 2010; Boesch et al. 2011; Foucher et al. 2011; Crisp et al. 2012, 2017;
Nguyen et al. 2014; Eldering et al. 2017).Absorption bands for retrievingCO2 concentration from
different satellites are shown in Figure 1. The weak CO2 absorption band at 6,250–6,410 cm−1

(1.58 µm) is combined with the absorption band at 4,760–4,930 cm−1 (2.06 µm) to retrieve CO2

abundances from the Orbiting Carbon Observatory 2 (OCO-2) satellite (Kuang et al. 2002) and
Greenhouse gases Observing SATellite (GOSAT) (Shiomi et al. 2008,Watanabe et al. 2008, Kuze
et al. 2009). CO2 channels at 660–770 cm−1, 970–990 cm−1, and 1,070–1,110 cm−1 are used to re-
trievemid-troposphericCO2 from theTropospheric Emission Spectrometer (TES) (Kulawik et al.
2010). Absorption bands at 690–725 cm−1, 694–705 cm−1, and 2,615–2,635 cm−1 are used to de-
rive mid-tropospheric CO2 from the Atmospheric Infrared Sounder (AIRS) (Chahine et al. 2008),
Infrared Atmospheric Sounding Interferometer (IASI) (Crevoisier et al. 2009), and Atmospheric
Chemistry Experiment (ACE) (Rinsland et al. 2010), respectively. These globally distributed CO2

retrievals from satellites offer a unique opportunity to explore atmospheric CO2 variability over
the planetary scale.

Surface, aircraft, and satellite data provide CO2 information at different altitudes. For example,
data from NOAA ESRL provide CO2 measurements at the surface. However, they are limited in
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spatial extent and do not contain CO2 vertical profiles. Aircraft CO2 data (e.g., NOAA ESRL,
CONTRAIL, INTEX-NA, HIPPO, IAGOS, CARVE) provide additional information on CO2

vertical structure, but they are limited in spatial extent and are not continuous. Recent satellite
CO2 retrievals provide continuous global maps of column CO2 (e.g., OCO-2 and GOSAT) and
mid-tropospheric CO2 (e.g., ACE, AIRS, IASI, and TES). In this article, we discuss the variability
of atmospheric CO2 concentrations, especially new results emerging from satellite data.

2. IMPACTS OF BIOSPHERE AND LARGE-SCALE ATMOSPHERIC
CIRCULATION ON CO2 CONCENTRATIONS

2.1. Annual and Semiannual Cycles of CO2

Atmospheric CO2 concentration demonstrates an annual cycle. Using in situ CO2 measurements,
previous studies (Pearman & Hyson 1980, 1981; Cleveland et al. 1983; Bacastow et al. 1985;
Keeling et al. 1996; Shia et al. 2006; Buermann et al. 2007) explored the CO2 annual cycle over
different locations and revealed that it is related to the interaction between the biosphere and
the atmosphere. Recent satellite retrievals provide CO2 data over the global domain and of-
fer a unique opportunity to explore the CO2 annual cycle over different regions (e.g., Chahine
et al. 2005, Crevoisier et al. 2009, Kulawik et al. 2010, Rinsland et al. 2010, Lindqvist et al.
2015, Jiang et al. 2016, Eldering et al. 2017). Using CO2 retrievals from the IASI, Crevoisier
et al. (2009) revealed a larger CO2 annual cycle in the Northern Hemisphere than in the South-
ern Hemisphere for the upper tropospheric (11–15 km). Chahine et al. (2005) compared mid-
tropospheric CO2 from AIRS with CONTRAIL CO2 aircraft data and found that the satellite-
derived AIRS mid-tropospheric CO2 captures the correct CO2 annual cycle in both hemispheres.
Kulawik et al. (2010) compared mid-tropospheric CO2 from TES to CO2 data from Mauna Loa,
CarbonTracker, and CONTRAIL data and found a consistent CO2 annual cycle among different
data sets. Rinsland et al. (2010) analyzed satellite-derived ACE mid-tropospheric CO2 retrievals
and found a CO2 annual cycle similar to the GLOBALVIEW aircraft CO2 data. The GOSAT
column CO2 measurements were compared to the ground-based TCCON data and were found
to have similar CO2 annual cycles (Lindqvist et al. 2015). Eldering et al. (2017) calculated weekly
averaged OCO-2 column CO2 data from Hawaii, EuroAsia, and the South Pacific. As shown in
Figure 2, OCO-2 column CO2 annual cycle amplitudes are larger in Hawaii and EuroAsia than
in the South Pacific because there is less CO2 surface emission and uptake in the South Pacific
(Eldering et al. 2017). In addition to the annual cycle, atmospheric CO2 also demonstrates a semi-
annual cycle, which is related to the biosphere-atmosphere exchange ( Jiang et al. 2012).

Using a multiple regression method, Jiang et al. (2016) studied CO2 annual cycle and semian-
nual cycle amplitudes from different satellite CO2 retrievals (e.g., GOSAT, AIRS, TES), NOAA
ESRL surface CO2, and TCCON column CO2. As shown in Figure 3, of all these data sets,
NOAA ESRL surface CO2 has the largest annual cycle and semiannual cycle amplitudes; AIRS
mid-tropospheric CO2 has the smallest annual cycle and semiannual cycle amplitudes. Annual cy-
cle and semiannual cycle amplitudes derived from GOSAT XCO2 (column-averaged CO2 dry air
mole fraction) are consistent with those from TCCONXCO2 but smaller than those in the NOAA
ESRL surface data. All CO2 data correctly demonstrate the latitudinal gradient for CO2 annual
cycle amplitudes, with larger amplitudes in the Northern Hemisphere than the Southern Hemi-
sphere. Figure 3 also demonstrates that the amplitudes of CO2 annual and semiannual cycles
decrease with altitude ( Jiang et al. 2016) because the sources of cycles are located at the surface
and the signals decay with the altitude. The Model for OZone And Related chemical Tracers-2
(MOZART-2) and CarbonTracker models were used to explore the CO2 annual cycle. The CO2
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Figure 2

OCO-2 CO2 data from Hawaii (blue), EuroAsia (dark yellow), and the South Pacific (green). XCO2 is the CO2 dry air mole fraction in
units of parts per million. Abbreviations: CO2, carbon dioxide; OCO-2, Orbiting Carbon Observatory 2. Figure adapted from Eldering
et al. (2017) with permission from AAAS.

annual cycle results from these models are similar to those from the satellite CO2 retrievals in
most regions except the Northern Hemisphere mid-latitudes, which might be related to the weak
convective mass flux ( Jiang et al. 2008) and underestimation of net ecosystem exchange in the
models (Yang et al. 2007). These results can help us to better understand the vertical distribution
of atmospheric CO2 and identify possible deficiencies in the models.

2.2. Intraseasonal Variability of CO2

In addition to the annual cycle and semiannual cycle, atmospheric CO2 also demonstrates in-
traseasonal variability.

2.2.1. Influence of the Madden-Julian Oscillation. Intraseasonal variability, such as the
Madden-Julian Oscillation (MJO), can modulate mid-troposphere CO2 concentrations in the
tropics and polar region (Li et al. 2010, Li 2018). MJO is an important intraseasonal feature with
a period of about 30–90 days (Madden & Julian 1971). It can influence convection, rainfall, winds,
and chemical tracers (Knutson & Weickmann 1987, Tian et al. 2007, Jiang et al. 2009). Figure 4
demonstrates the MJO-related mid-tropospheric CO2 anomalies and the Tropical Rainfall Mea-
suring Mission rainfall anomalies for eight phases of the MJO. The eight MJO phases are defined
by the All-season Real-time Multivariate MJO index and represent different phases of the MJO
cycle in a temporal sequence, asMJOpropagates from the IndianOcean to the eastern Pacific.The
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Figure 3

Latitudinal distributions of (a) CO2 annual cycle amplitudes and (b) CO2 semiannual cycle amplitudes. Shown are results from AIRS
mid-tropospheric CO2 (blue lines), GOSAT XCO2 (green lines), TES mid-tropospheric CO2 (red lines), NOAA ESRL surface CO2
(purple dots), and TCCON XCO2 (dark yellow triangles). Abbreviations: AIRS, Atmospheric Infrared Sounder; CO2, carbon dioxide;
GOSAT, Greenhouse gases Observing SATellite; NOAA ESRL, National Oceanic and Atmospheric Administration Earth System
Research Laboratory; TCCON, Total Carbon Column Observing Network; TES, Tropospheric Emission Spectrometer. Figure
adapted with permission from Jiang et al. (2016).

duration of each phase is 6 days. The positive rainfall anomalies are associated with enhanced ris-
ing air, which will bringmore CO2 from the surface to themid-troposphere, as shown in Figure 4.
The sinking air can bring low concentrations of CO2 from high altitudes to the mid-troposphere,
contributing to negative CO2 anomalies.TheseMJO-related CO2 anomalies propagate fromwest
to east as shown in phases 1–8 in Figure 4. The peak-to-peak CO2 amplitude of the composite
MJO modulation is about 1 ppm.

MJO can also modulate CO2 concentrations in the high latitudes. Li (2018) explored AIRS
mid-tropospheric CO2 over the Arctic region.MJOwas separated into four different phases (phase
8 + 1, phase 2 + 3, phase 4 + 5, and phase 6 + 7). As shown in Figure 5, Arctic CO2 anomalies
are negative during phase 8 + 1 and positive during phase 4 + 5. The amplitude of MJO-related
Arctic CO2 anomalies is about 1.2 ppm. The Arctic MJO–related CO2 anomalies represent a
teleconnection betweenMJO and the polar atmosphere (Li 2018).Themechanism by whichMJO
influences CO2 in the Arctic needs to be investigated in the future (Li 2018).
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Figure 4

MJO-related AIRS CO2 anomalies (color) and MJO-related rainfall anomalies (contours) for eight MJO phases. Abbreviations: AIRS,
Atmospheric Infrared Sounder; CO2, carbon dioxide; MJO, Madden-Julian Oscillation; TRMM, Tropical Rainfall Measuring Mission.
Figure adapted with permission from Li et al. (2010).

2.2.2. Influence of stratospheric sudden warming. In addition to the MJO signal in mid-
tropospheric CO2, stratospheric sudden warming (SSW) can also modulate CO2 concentrations.
SSW is an important source of variability in the polar stratosphere.During SSW, the polar strato-
spheric temperature increases and the circumpolar wind reverses direction in a few days ( Jiang
et al. 2013b). The stratospheric polar vortex weakens, the positive temperature anomalies prop-
agate downward, and there is less sinking air in the polar region during SSW (Limpasuvan et al.
2004). SSW can influence tracer concentrations (e.g., Manney et al. 2009, Sofieva et al. 2012,
Jiang et al. 2013b). Jiang et al. (2013b) investigated the influence of SSW on the mid-tropospheric
CO2 retrievals from AIRS. AIRS mid-tropospheric CO2 concentrations were explored before
(Figure 6a,c) and after (Figure 6b,d) SSW events. It was found that mid-tropospheric CO2 con-
centrations increased by 2–3 ppm within a few days after SSW events. After the SSW, the polar
vortex areas shrank. In the horizontal direction, strong northward winds can bring mid-latitude,
high-concentration CO2 into the polar region (Figure 6b,d). In the vertical direction, the reduced
sinking air leads to less stratosphere-troposphere exchange, which can contribute to the CO2 in-
crease after the SSW ( Jiang et al. 2013b). It is still a challenge to simulate the influence of SSW
on model CO2 ( Jiang et al. 2013b).

2.3. Interannual Variability of CO2

In addition to the annual cycle, semiannual cycle, and intraseasonal variability, atmospheric CO2

also demonstrates interannual variability.
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Figure 5

MJO-related AIRS CO2 anomalies (color), MJO-related rainfall anomalies (dark red contours), and isentropic potential vorticity anomalies
(dark green contours). Abbreviations: AIRS, Atmospheric Infrared Sounder; CO2, carbon dioxide; MJO, Madden-Julian Oscillation;
PVU, potential vorticity unit, TRMM, Tropical Rainfall Measuring Mission. Figure adapted with permission from Li (2018).

2.3.1. Influence of the El Niño-Southern Oscillation. In the tropical region, the El Niño–
Southern Oscillation (ENSO) is the most important source of interannual variability. During
ENSO events, sea surface temperature is high over the central and eastern Pacific, and con-
vection and rain form over the central Pacific (Gage & Reid 1987). Previous studies (Bacastow
1976, Bacastow et al. 1980) suggested that the surface CO2 concentrations could be modulated
by ENSO. It was also noticed that the rate of atmospheric CO2 rise increases at the surface
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Figure 6

AIRS CO2 data averaged in (a) April 1–10, 2003, and (c) March 1–10, 2005 (before SSW events), and (b) April 21–30, 2003, and
(d) March 22–31, 2005 (after SSW events). Units for AIRS CO2 are in parts per million. Black contours are NCEP2 500-hPa
geopotential height data averaged over the same time periods as AIRS CO2. Abbreviations: AIRS, Atmospheric Infrared Sounder; CO2,
carbon dioxide; NCEP2, National Centers for Environmental Prediction 2; SSW, stratospheric sudden warming. Figure adapted from
Jiang et al. (2013b); copyright the American Meteorological Society.

during ENSO events (Keeling et al. 1995, Jones et al. 2001). During ENSO events, the upwelling
of ocean water ceases at the South American coast, which decreases the CO2 concentration in
surface water (Feely 1987; Inoue & Sugimura 1992; Wong et al. 1993; Feely et al. 1997, 2006).
However, the terrestrial biosphere becomes a larger source of atmospheric CO2 due to the in-
crease of respiration during ENSO events (Francey et al. 1995, Keeling et al. 1995, Jones et al.
2001). The net effect from land and ocean is that the surface CO2 growth rate increases during
ENSO events. These previous studies mainly focus on a few surface stations.

Satellite CO2 retrievals confirm that ENSO can modulate mid-tropospheric CO2 concen-
tration. During ENSO, air rises over the central Pacific, which will bring high-concentration
surface CO2 to the mid-troposphere. Air sinks over the western Pacific, which will bring low-
concentration CO2 from high altitudes to the mid-troposphere. As a result, there is more
AIRS mid-tropospheric CO2 over the central Pacific (where air is ascending) and less AIRS

www.annualreviews.org • Global Patterns of Carbon Dioxide Variability 233

A
nn

u.
 R

ev
. E

ar
th

 P
la

ne
t. 

Sc
i. 

20
19

.4
7:

22
5-

24
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

H
ou

st
on

 -
 M

ai
n 

on
 0

6/
12

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



EA47CH10_Yung ARjats.cls May 1, 2019 10:42

CO2 (ppm)

1.00.50– 0.5–1.0

120°E

September

Niño 3.4

2014

2015

2016

September

October

November

December

January

February

March

April

May

June

Onset phase
of El Niño
2015–2016

Mature phase
of El Niño
2015–2016

End of El Niño
May 2016

October

November

December

January

February

March

April

May

July

August

AM 120°W

Longitude

Figure 7

Time evolution of OCO-2 detrended XCO2 anomalies averaged over 5°S to 5°N. Abbreviation: CO2, carbon
dioxide; OCO-2, Orbiting Carbon Observatory 2. Figure adapted from Chatterjee et al. (2017) with
permission from AAAS.

mid-tropospheric CO2 over the western Pacific (where air is descending) during ENSO events
( Jiang et al. 2010, Jiang et al. 2013a). Similar results are also seen inMOZART-2mid-tropospheric
CO2 data; however, the ENSO signal is weaker in the model than in those from AIRS mid-
tropospheric observations ( Jiang et al. 2013a).UsingOCO-2 columnCO2,Chatterjee et al. (2017)
found a strong correlation between atmospheric CO2 and ENSO. As shown in Figure 7, there
is a negative XCO2 anomaly during the onset phase of ENSO, which is related to the decreased
upwelling in the tropical Pacific Ocean (Chatterjee et al. 2017). Positive XCO2 anomalies are seen
during the mature and end phase of ENSO, which is due to the terrestrial component of the car-
bon cycle, especially the enhanced fire emissions (Chatterjee et al. 2017). It was also found that
the biosphere released more CO2 into the atmosphere during the 2015–2016 ENSO compared
to normal years (Liu et al. 2017).

2.3.2. Influence of the Tropospheric Biennial Oscillation. The Tropospheric Biennial Os-
cillation (TBO) is another important source of interannual variability in the tropical region. TBO
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is defined as an oscillation in the strength of the Asian monsoon. The Asian monsoon may be
strong in one year and weak in another year within a period of two years (Mooley & Parthasarathy
1984). During a strong monsoon year, the strong western Walker circulation is associated with
strong rising air over the Indo-Pacific (Chang & Li 2000), which can bring more CO2 from the
surface to the mid-troposphere (Wang et al. 2011). AIRS mid-tropospheric CO2 data averaged
over strong and weak monsoon years are shown in Figure 8a,b, respectively. The difference and
corresponding significance level are shown in Figure 8c,d, respectively. Mid-tropospheric CO2

concentrations are higher over the Indo-PacificOcean during strongmonsoon years,which are as-
sociated with strong rising air (Wang et al. 2011). The time series of AIRS mid-tropospheric CO2

data averaged over the Indo-Pacific Ocean has a periodicity of around two years and correlates
well with the TBO index. A similar TBO signal is also seen in model CO2 concentrations from
MOZART-2, although the magnitude of the TBO CO2 signal in this model is weaker compared
with those from AIRS mid-tropospheric CO2 data (Wang et al. 2011).

2.3.3. Influence of annular modes. In high latitudes, annular modes are the most important
source of interannual variability (Thompson &Wallace 1998). There are two annular modes: the
Northern Annular Mode (NAM) and the Southern Annular Mode. The annular modes explain
∼20–30% of the total variability of the geopotential height in the Northern and Southern Hemi-
spheres and are characterized by opposite geopotential height anomalies in the polar region and
mid-latitudes (Thompson & Wallace 2000). Jiang et al. (2010) found that the NAM can influ-
ence CO2 concentration. Using mid-tropospheric data from AIRS, they explored the influence
of the NAM on CO2. As shown in Figure 9a, the detrended polar CO2 concentration correlates
well with the detrended and inverted NAM index with a correlation coefficient of 0.7. AIRS mid-
tropospheric CO2 data averaged over strong polar vortex years (2005 and 2007) and weak polar
vortex years (2006 and 2008) are shown in Figure 9b,c, respectively. Overall, in high latitudes,
there is less mid-tropospheric CO2 in the polar region during strong polar vortex years than weak
ones. When the polar vortex is strong, there is a strong jet stream, making it hard for CO2 in
mid-latitudes to penetrate into the polar region. During the strong polar vortex years, there is
also increased photosynthetic uptake of atmospheric CO2 in spring, which also contributes to
negative CO2 anomalies in the polar region (Russell & Wallace 2004, Schaefer et al. 2005, Jiang
et al. 2010). The absolute amplitude of the CO2 difference between the strong and weak polar
vortex years is about 2–3 ppm, as shown in Figure 9d. Similar results are expected for CO2 over
the Southern Hemisphere high latitudes when the data become available in the future.

3. OTHER SOURCES OF CO2 VARIABILITY

3.1. Influence of Fire

Biomass burning is a major source for CO2 in the atmosphere. Utilizing the latest XCO2 retrievals
from OCO-2, Heymann et al. (2017) found that there was more atmospheric CO2 during the fire
season in 2015 at Indonesia than during normal seasons. OCO-2 XCO2, background XCO2, and
XCO2 enhancements are shown in Figure 10a,b,c, respectively. As shown in Figure 10c, there was
more atmospheric CO2 during the fire event (about 2 ppm) (Heymann et al. 2017).

3.2. Influence of Volcanic Eruption

Volcanic eruptions also release CO2 into the atmosphere. Schwandner (2017) explored a CO2

release event from the Yasur volcano on Tanna Island, Vanuatu (19°S, 169°E), on May 30, 2015.
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Figure 8

AIRS detrended mid-tropospheric CO2 averaged over (a) strong monsoon years ( JJAS of 2003, 2005, 2007, and 2010) and (b) weak
monsoon years ( JJAS of 2004, 2006, and 2008). (c) CO2 differences between panels a and b. (d) CO2 differences within 10% significance
level (blue). The black rectangle highlights the Indo-Pacific region. Abbreviations: AIRS, Atmospheric Infrared Sounder; CO2, carbon
dioxide; JJAS, June, July, August, and September. Figure adapted with permission from Wang et al. (2011).
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(a) AIRS detrended polar CO2 (blue solid line) and detrended NAM index (red dashed line, inverted), (b) AIRS detrended CO2 during
strong polar vortex years (2005 and 2007), (c) AIRS detrended CO2 during weak polar vortex years (2006 and 2008), (d) difference of
AIRS CO2 between strong and weak polar vortex years, and (e) t-value for the CO2 difference. All CO2 data are averaged from
November to April. Abbreviations: AIRS, Atmospheric Infrared Sounder; CO2, carbon dioxide; NAM, Northern Annular Mode.
Figure adapted with permission from Jiang et al. (2010).
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Figure 10

(a) OCO-2 XCO2 in July–November 2015, (b) background XCO2 in July–November 2015, and (c) XCO2
enhancements for the Indonesian region. Abbreviation: OCO-2, Orbiting Carbon Observatory 2. Figure
adapted with permission from Heymann et al. (2017).

As shown in Figure 11, OCO-2 detected a high CO2 plume from the volcano, and several high
XCO2 footprints were found within 15 km downwind. A Gaussian plume model was used to sim-
ulate the enhancement of atmospheric CO2 due to the eruption, and the model results were con-
sistent with the XCO2 signal from OCO-2 (Schwandner 2017). The magnitude of the CO2 en-
hancement due to the volcanic eruption was about 3.4 ppm near the crater vent (Schwandner
2017).
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Figure 11

CO2 plume emitted from the Yasur volcano in Vanuatu (white circle with a black outline and cross) on May 30, 2015. (a) OCO-2 XCO2 over
MODIS composite imagery. (b) The order of magnitude of the XCO2 enhancement and the extent of the plume corresponding to a
model CO2 source of 41.6 kt/day at the time of overpass. (c) The magnitude of the excess shows XCO2 over ocean (blue circles), land
(brown circles), and plume (orange circles). The red oval highlights the volcanic plume data (orange circles), and the red dashed line is the
plume mean with the green end nodes representing the extent of the detectable plume. Abbreviations: CO2, carbon dioxide; MODIS,
Moderate Resolution Imaging Spectrometer; OCO-2, Orbiting Carbon Observatory 2. Figure adapted from Schwandner (2017) with
permission from AAAS.

3.3. Influence of Drought

Atmospheric CO2 concentrations can also be influenced by droughts, as demonstrated by
Buermann et al. (2007) for the Mauna Loa record. Using satellite retrievals, Jiang et al. (2017)
analyzed the impact of droughts on mid-tropospheric CO2 over the southwestern United States.
Mid-tropospheric CO2 averaged over dry months [ June, July, August, and September ( JJAS)
of 2003, 2007, and 2010] and wet months ( JJAS of 2006, 2008, 2011, and 2012) are shown in
Figure 12a,b, respectively, and the difference between dry years and wet years and correspond-
ing significance are shown in Figure 12c,d, respectively. In this region, mid-tropospheric CO2

concentrations in dry years are ∼1 ppm higher than concentrations in wet years. Surface temper-
ature is higher during droughts, which leads to an unstable environment and enhanced rising air.
The increasing vertical motion can bring more CO2 from the surface to upper levels. In addition,
there is less CO2 uptake from the biosphere due to reduced plant photosynthesis and greater soil
respiration during droughts, which can contribute to the positive CO2 anomaly during dry years
( Jiang et al. 2017).

4. CONCLUSION

Recent satellite CO2 data provide global distributions of CO2, which offer a unique opportunity
to explore CO2 variability at different timescales (e.g., trend, intraseasonal, semiannual, annual,
and interannual variability). Different satellite CO2 retrievals (e.g., AIRS, ACE, IASI, GOSAT,
OCO-2, and TES) capture the correct CO2 seasonal cycle when compared with in situ CO2 mea-
surements. The CO2 annual cycle has the largest amplitude at the surface, which decays with
altitude. In addition to the annual cycle, atmospheric CO2 concentration also demonstrates a
semiannual cycle, which is related to the interaction between biosphere and atmosphere. Satellite
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Figure 12

AIRS CO2 concentrations averaged in (a) dry years ( JJAS of 2003, 2007, and 2010) and (b) wet years ( JJAS of 2006, 2008, 2011, and
2012), (c) CO2 differences between panels a and b, and (d) CO2 differences within 5% significance level (light green) and 1% significance
level (dark green). Abbreviations: AIRS, Atmospheric Infrared Sounder; CO2, carbon dioxide; JJAS, June, July, August, and September.
Figure adapted with permission from Jiang et al. (2017).

CO2 measurements can also be used to explore the intraseasonal variability of CO2. The 30- to
90-day MJO oscillation can influence atmospheric CO2 concentrations with a magnitude of
1 ppm at tropics and high latitudes. During an SSW event, CO2 concentrations increase by 2–
3 ppm within a few days. In addition to the semiannual cycle, annual cycle, and intraseasonal
variability, atmospheric CO2 also demonstrates variability at interannual timescales. ENSO, an
important, large-scale component of interannual climate variability in the tropics, can modulate
CO2 concentrations with a magnitude of 1–2 ppm. TBO is related to the strengths of monsoon
and westernWalker circulation; it canmodulate CO2 concentrations over the Indo-Pacific region.
At high latitudes, CO2 concentrations can be influenced by the NAM. There is less CO2 in the
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polar region during the positiveNAMyears because of weak horizontal mixing and increased plant
uptake of atmospheric CO2 in spring. In addition to the intraseasonal and interannual variability,
atmospheric CO2 concentrations can also be modulated by fire, volcanic eruptions, and droughts.
These results will help us better understand the natural variability of CO2 and the interactions of
atmospheric CO2 with biosphere, biomass burning, and atmospheric circulation,which are critical
for investigating the carbon budget.

Nearly half a century ago, a seminal paper by Lovelock (1971) argued for the usefulness of
chlorofluorocarbons as indicators of atmospheric movements. Results summarized in this paper
suggest that CO2 has largely fulfilled Lovelock’s vision for tracking atmospheric movement and
circulation. It remains a challenge for atmospheric models to simulate the global patterns of vari-
ability of CO2 summarized here. For example, preliminary modeling suggested that deep convec-
tion, which lofts CO2 from the planetary boundary layer to the mid-troposphere, is underesti-
mated in transport models ( Jiang et al. 2008). Results from the variability of CO2 can help us to
identify possible deficiencies in the models and improve the models in the future.
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